If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n=1998
We move all terms to the left:
n^2+n-(1998)=0
a = 1; b = 1; c = -1998;
Δ = b2-4ac
Δ = 12-4·1·(-1998)
Δ = 7993
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{7993}}{2*1}=\frac{-1-\sqrt{7993}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{7993}}{2*1}=\frac{-1+\sqrt{7993}}{2} $
| 3z=6,561 | | -32=5+8(b-4) | | 90=2x-28 | | -9a=4=112 | | (5x-15)+95=180 | | x/10-8=11/20 | | 7x=x^2+12x=x^2+12/7 | | 3z=81^ | | -9c+5-8=-22 | | 12y+14+10y=80 | | 9.2x=52-x | | x+116=5x | | 12v+10v+14=88 | | 35-w=6w | | 2n-8+4=-4n+8 | | -3(-5)+y=5(-5)+2y | | 4p-2=-9+7p | | x+0.07x=37.45 | | 5x+3x=-48 | | 23x+8=4x+18 | | X-1/4=1/2-x | | 2n-40=-6(n+8) | | 32=4(7y-2) | | 3a-21=-6(a-1) | | -5(1-4v)=-5+4v | | 2x+2+3x-15=6 | | -6(1+a)=-4-6a | | 4x+2x+7=3x+7 | | 4x+2(x+2)=1+6x | | 5(3z-1)-5(z+4)=4(z=1) | | 7(m-7)-m=-21+2m | | 1/2(-16g-20)=-8g-10 |